Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic

نویسندگان

  • Jeroen S. de Bruin
  • Klaus-Peter Adlassnig
  • Alexander Blacky
  • Walter Koller
چکیده

BACKGROUND Many electronic infection detection systems employ dichotomous classification methods, classifying patient data as pathological or normal with respect to one or several types of infection. An electronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient data classified as borderline with respect to an infection-related clinical concept or HAI surveillance definition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and are therefore neither fully pathological nor fully normal. OBJECTIVE Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI definitions. In dichotomous classification methods, borderline classification results would be confounded by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-ICU classified patient data too often or too infrequently as borderline instead of normal. PARTICIPANTS AND METHODS Electronic surveillance data were collected from adult patients (aged 18 years or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For classification, a part of Moni-ICU's knowledge base comprising fuzzy sets and rules for ten infection-related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the classification of concepts directly related to patient data; fuzzy rules were employed for the classification of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical concept and HAI definition were classified as either normal, borderline, or pathological. For the assessment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance of these comparisons was expressed in p-values calculated with Fisher's exact test. RESULTS The results showed that, for clinical concepts represented by fuzzy sets, 1-17% of the data were classified as borderline. The number was substantially higher (20-81%) for fuzzy rules representing more abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-level HAI definitions (0.02-2.35%). Seven of ten fuzzy sets and rules were associated significantly more often with borderline values than with normal values for their respective HAI definition(s) (p<0.001). CONCLUSION The study showed that Moni-ICU was effective in classifying patient data as borderline for infection-related concepts and top-level HAI surveillance definitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic

By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written ...

متن کامل

DRILL WEAR PREDICTION SYSTEM USING OF MOTOR CURRENT AND FUZZY LOGIC METHOD

In automation flexible manufacturing systems, tool wear detection during the cutting process is one of the most important considerations. This study presents an intelligent system for online tool condition monitoring in drilling process .In this paper, analytical and empirical models have been used to predict the thrust and cutting forces on the lip and chisel edges of a new drill. Also an empi...

متن کامل

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

Predicting Failure in the Hydraulic Lift Structures with Monitoring and Fuzzy Logic

There are several strategies for maintenance and repairing of devices in industry. However, they are still confronted with many uncertainties. A hydraulic lifting device after ten years of working in a technical center in Isfahan is faced with uncertainty in terms of reliability. Being able to know the reliability of pieces means predicting failure occurrences, which is accomplished by conditio...

متن کامل

Validation of Fuzzy Sets in an Automated Detection System for Intensive-Care-Unit-Acquired Central-Venous-Catheter-Related Infections

Central venous catheters play an important role in patient care in intensive care units (ICUs), but their use comes at the risk of catheter-related infections (CRIs). Electronic surveillance systems can detect CRIs more accurately than manual surveillance, but these systems often omit patients that do not exhibit all infection signs to their full degree, the so-called borderline group. By exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2016